Time Allowed: Three hours Maximum Marks: 300 The figures in the margin indicate full marks for the questions Candidates should answer Question Nos. 1 and 5 which are compulsory and other three of the remaining questions, selecting at least one from each Section ## SECTION-A 1. Answer any three of the following: 20×3=60 (a) Pyrrole behaves as an aromatic compound Explain it in the light of Hückel's rule. (b) Explain the observed pK_a values of the following three hydrocarbons: (i) $$HC = CH$$ (p $K_a = 25$) (ii) $$CH_2 = CH_2$$ $(pK_a = 50)$ (iii) $$(pK_a = 15)$$ - (c) Propose a general mechanism of electrophilic substitution reaction of benzene. How can Lewis-proposed mechanism be supported by isotopic labelling technique? - (d) Write two methods of generating carbenes by photolytic α -elimination reactions. How can ketenes be obtained by skeletal rearrangement of carbenes? (i) $$R \longrightarrow OH \xrightarrow{SOCl_2} R \longrightarrow CI$$ (ii) $$R \longrightarrow R \longrightarrow OH + R \longrightarrow OH$$ (b) Discuss the effect of solvent polarity on the rates of the following S_N reactions: $10\times2=20$ (i) $$RX + Nu^{\Theta} \longrightarrow R - Nu + X^{\Theta}$$ (ii) $$RX + NH_3 \longrightarrow R - NH_2 + X^{\Theta}$$ (c) Answer the following: 10×2=20 - (i) Write a method of synthesis of indole ring. Which position of indole is attacked by E⁺? Give reasons. - (ii) Why does furan undergo cycloaddition reaction with acetylene dicarboxylic acid? Write a general mechanism of electrophilic substitution of pyrrole explaining the regioselectivity of the reaction. - 3. (a) What are non-classical carbocations? In the light of this, explain why the following 1°-alkyl halide undergoes S_NI reaction readily: - (b) Give an example of cationotropic 1,2-shift involving a carbanion intermediate and write the mechanism of the reaction. - (c) What is primary kinetic isotope effect? Using this method, establish the mechanism of the following bromination reaction: $$CH_3COCH_3 + Br_2 \longrightarrow CH_3COCH_2Br + HBr$$ (d) The following labelled chlorobenzene (* shows the labelled atom) derivative on heating with sodamide gives a mixture of aniline derivatives. Propose a mechanism of the reaction to explain the formation of products: $$\begin{array}{c} CH_3 \\ Cl \\ NaNH_2 \end{array}$$ $$\begin{array}{c} CH_3 \\ NH_2 \end{array}$$ $$\begin{array}{c} CH_3 \\ NH_2 \end{array}$$ (e) How will you explain that benzenediazonium-2-carboxylate spontaneously decomposes with violence? $$N_2^{\bigoplus}$$ (Benzenediazonium-2-carboxylate) What products will be obtained if the above decomposed mixture is treated with (i) NH_3 and (ii) H_2S ? - **4.** (a) Propose a mechanism of Von Richter reaction to explain the formation of product and N_2 molecule. - (b) Write how benzoin condensation is carried out. Why it may be regarded as a carbonyl umpolung reaction? - (c) (i) How can catenanes be synthesized by acyloin condensation reaction? Write the mechanism of the reaction. - (ii) Discuss the choice of the solvent and the base in the formation of enolate ion for C—C bond formation by aldol condensation. ## SECTION-B 5. Answer any three of the following: 20×3=60 15 (a) (i) State the IR frequency of the group C=O and explain the change of frequencies in the following compounds: $$COCH_3$$ $COCH_3$ $COCH_3$ NH_2 $COCH_3$ COC | (ii) | Explain | why | alkene | trans-4 | octene | does | not | show | any | infrared | |------|----------|-------|-----------|---------|---------|--------|------|------|-----|----------| | | absorpti | on fo | r its car | bon—ca | rbon do | uble l | ond. | • | | | 5×4=20 5 ## (b) Answer the following: - Generally a polar solvent shifts the $\pi \to \pi^*$ to longer wavelengths, whereas it shifts the $n \to \pi^*$ transition to shorter wavelengths. Explain. - β-carotene present in carrot absorbs in the visible region. Explain. - (iii) The O—H infrared absorption is more intense than the C—H infrared absorption. Explain. - (iv) Which one of the following pair is expected to show higher C=O stretching frequency? Give reasons of it: ## Acetic acid and acetone The $J = 0 \rightarrow J = 1$ rotational absorption line occurs at 1.153×10^{11} Hz (c) in $C^{12}O^{16}$ and at 1.102×10^{11} Hz in $C^{x}O^{16}$. Find the mass number of unknown carbon isotope. 10 (ii) A very dilute solution of ethyl alcohol in carbontetrachloride shows a sharp infrared band at 3600 cm⁻¹. As the solution is made more concentrated, a new rather broadband appears at 3200 cm⁻¹-3600 cm⁻¹. The sharp band disappears and is replaced entirely by broadband. Explain. 10 (d) How can the members of each pair of the following compounds be distinguished by a glance at their IR spectra? 20 - CH₃CH₂OCH₂CH₃ and CH₃CH₂CH₂CH₂OH - (ii) (CH₃)₃N and CH₃CH₂CH₂NH₂ - (iii) CH₃CH₂C=CH and CH₃CH₂CH₂=CH₂ - (iv) CH₃CH₂CH₂COOH and CH₃CH₂COOCH₃ - **6.** (a) Write a step-by-step mechanism for the polymerization of vinyl chloride in presence of organic peroxide. - (b) (i) Discuss how you can distinguish the three (ortho, meta and para) dibromobenzenes by their NMR spectra. - 10 10 - (ii) Suggest a structure consistent with the following NMR data: Molecular formula = C_9H_{12} Singlet at $\delta 6.78$, 3H Singlet at $\delta 2 \cdot 25$, 9H - (c) Discuss the secondary and tertiary structure of proteins. Explain interactions of different forces present in the tertiary structures. - 7. (a) How can the following be distinguished from their mass spectra? 20 - (i) 3-methyl-2 hexanone from 4-methyl-2 hexanone - (ii) 3-pentanone and 2-pentanone - (b) Explain the following with reference to mass spectrometry: 20 - (i) The molecular ion for a tertiary alcohol is not detectable - (ii) A primary alcohol can be easily identified by the presence of a strong peak at m/z = 31 - (iii) Some alcohols show a peak at m/z = M-18 - (iv) The mass spectrum of 1-chloropropane contains two peaks at m/z = 78 and 80, in addition to other peak - (c) (i) Compare the stereoselectivity of Saytzeff and pyrolytic eliminations. - (ii) How many Hoffmann eliminations will be needed to expel the N-atom from the following compound? Write the steps of the reaction and the structure of the final product: 5 - **8.** (a) An organic compound with molecular formula C₈H₇Br yields a primary alcohol on hydroboration. The spectral data of the compound is given below: - (i) UV λ_{max} 282 m μ ϵ_{max} 450 - (ii) IR: 3033 (m), 1646 (m), 1602 (m), 1582 (v), 820 (s) and $761 \,\mathrm{cm}^{-1}$ (m) - (iii) NMR: $2 \cdot 62 2 \cdot 74 \tau$ (asymmetrical pattern, $18 \cdot 9$ squares) - 4.30τ (double doublet, 4.7 squares) - 3.30τ (double doublet, 4.9 squares) - 4.86 τ (double doublet, 5.0 squares) Determine the structure of the compound. 20 - (b) Discuss the ESR spectra of— - (i) $[Fe(CN)_5 NO]^{3-}$ ion; - (ii) bis-salicylaldimine Cu(II). 5+15=20 5 (c) (i) Why do alkenes undergo $\mathrm{Ad_E}$ reaction but carbonyl compounds undergo $\mathrm{Ad_{Nu}}$ reactions? Discuss the regio- and stereo-selectivity of the following $\mathrm{Ad_E}$ reaction: (ii) Discuss the advantages of Si(CH₃)₄ over other substances in using it as a standard in NMR spectroscopy. * * *